On the role of charge transfer in halogen bonding.

نویسندگان

  • Jan Řezáč
  • Aurélien de la Lande
چکیده

The role of charge transfer in halogen bonding is the subject of an ongoing debate and controversy. It is clear from experimental data that charge transfer occurs in halogen bonds, but its contribution to the energetics of the interaction can be evaluated only computationally. Since the charge transfer is not a physically well-defined property, there are multiple computational approaches, which could yield very different results. In this work, we investigate this topic using our recently developed method based on constrained DFT, which allows the quantification of net charge transfer and the associated interaction energy component [Řezáč et al., J. Chem. Theory Comput., 2015]. It is based on the spatial definition of molecular fragments using the superimposed electron density of non-interacting fragments as a reference state free of charge transfer. This definition is close to the intuitive view of charge transfer, yet it removes any arbitrariness in the partitioning of the molecular complex. It has been shown to be very reliable as it avoids the issues encountered in other definitions of charge transfer. For example, the results are independent of the basis set. These calculations are complemented with DFT-SAPT decomposition, which yields the other components of the interaction energy. We have found the energetic contribution of charge transfer to halogen bonding to be rather small, on average about 10% of the interaction energy, which is less than that in hydrogen bonds. Even in very strong halogen bonds, where the absolute value of the charge-transfer energy becomes larger, it is still only a small fraction of the other attractive terms obtained from DFT-SAPT. These results suggest that although it is present, charge transfer is not the determining factor in halogen bonding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A theoretical study on halogen-π interactions: X-C2-Y…C8H8 complexes

M06-2X functional was employed to study halogen-π interactions in X-C2-Y…C8H8 complexes (X, Y=H, F, Cl, and Br). In fact, interactions of mono- or di-halogenated acetylenes and planar cyclooctatetraene as an anti-aromatic π system were considered. Relationship between binding energies of the complexes and charge transfer effects was investigated. Also, electronic charge density values were calc...

متن کامل

Interplay Between Lithium Bonding and Halogen Bonding in F3CX•••YLi•••NCCN and F3CX•••NCCN•••LiY Complexes (X = Cl, Br; Y = CN, NC)

MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F3CX···YLi···NCCN and F3CX···NCCN···LiY triads (X = Cl, Br; Y = CN, NC) which are connected via halogen and lithium bonds. Those complexes with the role of LiY as halogen acceptor and lithium donor show cooperativity with energy values ranging between -1.97 and -2.92 kJ mol...

متن کامل

Investigating the resonance energy and charge transfer in the clonidine and c60-clonidine-fullerene carriers with quantum chemistry calculations

Clonidine has two aromatic rings in which halogens are attached to one ring in this study, both in drug state and in fullerene nanostructure, and by changing the type of halogen at the * HF / 6-31G level and in The gas phase was first optimized and then the NBO calculations were performed. The results obtained in N61, N63 and N5, N3 indicate the highest rhizanese energy and load transfer that, ...

متن کامل

Electron-transfer reactions of halogenated electrophiles: a different look into the nature of halogen bonding.

The rates of oxidation of ferrocene derivatives by brominated molecules R-Br (CBr3CN, CBr4, CBr3NO2, CBr3COCBr3, CBr3CONH2, CBr3F, and CBr3H) were consistent with the predictions of the outer-sphere dissociative electron-transfer theory. The similar redox-reactions of the R-Br electrophiles with the typical halogen-bond acceptors tetramethyl-p-phenylenediamine (TMPD) or iodide were much faster ...

متن کامل

Halogen Bonding Interactions in DDQ Charge Transfer Salts with Iodinated TTFs

Oxidation of 3,4-ethylenedithio-3'-iodo-tetrathiafulvalene (EDT-TTF-I) and 3,4-ethylenedithio-3',4'-diiodo-tetrathiafulvalene (EDT-TTF-I2) with DDQ afforded two different salts formulated as (EDT-TTF-I)(DDQ) and (EDT-TTF-I2)2(DDQ)·(CH3CN), both characterized with a full charge transfer to the DDQ acceptor moiety and by short and linear halogen bonding interactions between the iodine atom as hal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2016